
Solution Sheet 7

Exercise 7.1

Let F : X × Y → X be continuous and bounded, (ξn) a collection of i.i.d Y-valued random
variables independent of the X -valued random variable X0. Define

Xn+1 = F (Xn, ξn).

Prove that the Markov Process X induces a Feller semigroup.

Proof. Set f ∈ Cb(X ), then

Tf(x) = E(f(Xn+1)|Xn = x)

= E(f(F (x, ξn))

=

∫
Ω
f(F (x, ξn)dP

=

∫
X
f(F (x, y))(ξ∗nP)(dy).

Set µ as the law of ξn, which is independent of n as the variables are i.i.d. Take now an arbitrary
sequence xk → x to test continuity. We see that

lim
k→∞

Tf(xk) = lim
k→∞

∫
X
f(F (xk, y))µ(dy)

=

∫
X

lim
k→∞

f(F (xk, y))µ(dy)

=

∫
X
f(F (x, y))µ(dy)

= Tf(x)

having applied the dominated convergence theorem, noting that f is bounded and this supremum
is integrable with respect to the probability measure µ. We of course also used the continuity of
both f and F in its first variable, hence of the composition.

Exercise 7.2

Define the transition probability P (x,A) =
∫
A ϕ(y)dy if x ≥ 0 and P (x,A) =

∫
A ψ(y)dy if

x < 0. Give conditions such that the associated semigroup is Feller. Provide an example where
this semigroup is not Feller.

Proof. A simple condition is that for every f ∈ Cb(X ),∫
X
f(y)ϕ(y)dy =

∫
X
f(y)ψ(y)dy.

This is due to the fact that

Tf(x) =

∫
X
f(y)P (x, dy)
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which is constant except for the singular jump at x = 0, hence this is the only possible point of
discontinuity. The condition ensures that Tf remains constant. As an example where the Feller
property is not satisfied, take X = [−1, 1] with ϕ and ψ supported on [0, 1] defined by ϕ(y) = 2y,
ψ(y) = 3y2. Then for f(x) = x, Tf(x) = 2

3 if x ≥ 0 and 3
4 if x < 0, hence Tf is discontinuous at

zero.

Exercise 7.3

Define the translation semigroup

(Ttf)(x) = f(x+ t).

1. Verify the semigroup property and that Tt is a linear isometry on C0(R) i.e. ∥Tt∥ = 1.

2. Show that (Tt) is strongly continuous on C0(R).

3. Show that (Tt) is strongly continuous and ∥Tt∥ = 1 on Lp(R) with 1 ≤ p <∞.

4. Identify the generator of (Tt).

5. Show that (Tt)i s not be strongly continuous on L∞(R).

Proof. hi

1. The semigroup property is clear. For the isometry,

supf :∥f∥=1∥Ttf∥ = supf :∥f∥=1∥f∥ = 1.

2. For a given f ∈ C0(R) and ε > 0, we can take a compact set K such that |f(x)| ≤ ε outside of
K, noting also that f is uniformly continuous on K, from which strong continuity is deduced.

3. ∥Tt∥ = 1 is again a direct consequence of the transformation formula for integrals and the
shift-invariance of the Lebesgue measure

supf :∥f∥=1

(∫
R
|Ttf |pdx

) 1
p

= supf :∥f∥=1

(∫
R
|f |pdx

) 1
p

= 1.

The strong continuity is a consequence of the dominated convergence theorem and the density
of C0 in Lp. We note that(∫

R
|(Tt − 1)f |pdx

) 1
p

≤
(∫

R
2|f |pdx

) 1
p

,

approximate f by continuous functions gn and use dominated convergence,(∫
R
|(Tt − 1)f |pdx

) 1
p

≤
(∫

R
|(Tt)(f − gn)|pdx

) 1
p

+

(∫
R
|(Tt − 1)gn|pdx

) 1
p

+

(∫
R
|(f − gn)|pdx

) 1
p

.

The only problematic term is the middle one, for which convergence holds when restricted to
compact sets as in the previous part and the tails must be uniformly small for large n.
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4. We simply identify the generator through a pointwise limit, for any given x ∈ R,

lim
t→0

Ttf(x)− f(x)

t
= lim

t→0

f(x+ t)− f(x)

t
=

d

dx
f(x)

hence the generator, at least formally, is given by d
dx . We leave the norm convergence of this

quantity, dependent on the chosen norm, up to the interested student.

5. ∥∥T (t)1[0,1] − 1[0,1]
∥∥
L∞(R) = 1

for all t ̸= 0.

Exercise 7.4

Let Tt be a strongly continuous semigroup on a Banach Space E. Prove that there exists
constants M ≥ 1, k ≥ 0 such that ∥Tt∥ ≤Mekt. Hint: Recall the Uniform Boundedness Principle,
that for a collection of continuous linear operators Si : X → Y where X is a Banach Space, if for
every x ∈ X we have that supi∥Si(x)∥Y <∞ then supi∥Si∥ <∞ for the operator norm.

Proof. We first show that there exists an a > 0,M ≥ 1 such that supt∈[0,a]∥Tt∥ ≤M . Suppose not
for a contradiction, then there exists a sequence tn → 0 such that ∥Ttn∥ → ∞. Strong continuity,
however, implies that for every x ∈ E, supn∥Ttnx∥E is bounded. Thus by the Uniform Boundedness
Principle we reach a contradiction. Now every t > 0 is of the form t = Na + δ for some δ < a,
hence by the semigroup property,

∥Tt∥ = ∥TN
a Tδ∥ ≤MN ·M

using that the operator norm of the composition is bounded by the product of the norms. Now we
set k = 1

a logM , so that

ekt = e
t
a
logM =M

t
a ≥MN

as t ≥ Na, justifying the bound.

Exercise 7.5

Let Tt be the semigroup induced by a Markov Process whose transition function is absolutely
continuous with respect to the Lebesgue Measure. Prove that Tt is not strongly continuous on
Bb(R).

Proof. Take f(y) = 1{0}(y), then Ttf = 0 for all t > 0, but as f(0) = 1, then ∥Ttf − f∥∞ = 1 for
all t > 0, so Tt is not strongly continuous.

Exercise 7.6

Define the heat kernel p : (0,∞)× Rd × Rd → [0,∞) by

pt(x, y) =
1

(2πt)
d
2

e−
|x−y|2

2t ,
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the associated transition function

Pt(x,A) =

∫
A
pt(x, y)dy

and furthermore the heat semigroup

Ttf(x) =

∫
Rd

f(y)Pt(x, dy).

1. Let W be a d-dimensional Brownian Motion. For 0 < s < t and f ∈ Bb(Rd), write down an
explicit expression for E [f(Wt)|Ws = x].

2. Verify that Tt is Feller.

3. You are given that for p ≥ 1 every f ∈ Lp(Rd) and t > 0, ∥Ttf∥Lp ≤ ∥f∥Lp . Prove that for
f ∈ Lp(Rd), then

lim
t→0

∥Ttf − f∥Lp = 0.

4. Determine the generator of Tt.

Proof. We take d = 1 for simplicity.

1. Recall firstly that P is the transition function for Brownian Motion, and from the definition
of the transition function,

E [f(Wt)|Ws] =

∫
R
f(y)Pt−s(Ws, dy) =

∫
R

∫
R
f(y)Pt−s(z, dy)µ(dz)

where µ is the law of Ws. Thus, E [f(Wt)|Ws = x] is as above where µ = δx, hence

E [f(Wt)|Ws = x] =

∫
R
f(y)Pt−s(x, dy) = Tt−sf(x).

2. We have that

Ttf(x) =
1√
2πt

∫
R
e

−(x−y)2

2t f(y)dy =
1√
2πt

∫
R
e

−(z)2

2t f(z + x)dz

which is explicitly shown to be continuous by taking xk → x and applying the Dominated
Convergence Theorem using ∥f∥∞ <∞.

3. Firstly we consider g smooth and compactly supported. Note that we can write

g(x) =
1√
2πt

∫
R
e

−(z)2

2t g(x)dz

so

Ttg(x)− g(x) =
1√
2πt

∫
R
e

−(z)2

2t (g(x+ z)− g(x)) dz

from the calculation in the previous part. Choosing δ > 0 such that for all |z| < δ, |g(x +
z)− g(x)| < ε,

Ttg(x)− g(x) ≤ ε+
2∥g∥∞√

2πt

∫
|z|≥δ

e
−(z)2

2t dz
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where the second term goes to zero as t→ ∞. In particular,

∥Ttg − g∥∞ → 0

as t→, which implies convergence in Lp by the Dominated Convergence Theorem as Ttg − g
is uniformly bounded in Lp. To show the result we take a sequence of smooth compactly
supported (gn) such that gn → f in Lp. Then

∥Ttf − f∥Lp ≤ ∥Ttf − Ttgn∥Lp + ∥Ttgn − gn∥Lp + ∥gn − f∥Lp .

In the first term we use that

∥Ttf − Ttgn∥Lp = ∥Tt(f − gn)∥Lp ≤ ∥f − gn∥Lp

so that now we can take the limit as t → 0 followed by the limit as n → ∞ to see that the
right hand side goes to zero as required.

4. As before, we simply show the generator as a pointwise limit. Using the first part, and taking
s = 0 for notational simplicity (that is, changing the initial value of our Brownian Motion),
we are considering

lim
t→0

Ttf(x)− f(x)

t
= lim

t→0

E [f(Wt)|W0 = x]− f(x)

t

where we assume that f is smooth. Taking a Taylor Expansion about f(x) gives us that

E [f(Wt)|W0 = x] = E

[
f(x) + (Wt − x)f ′(x) +

1

2
(Wt − x)2f ′′x+ · · · ....|W0 = x

]
where the remaining terms are of higher order in t, so will vanish in the limit as t → 0.
Computing these terms gives us

f(x) +
t

2
f ′′(x)

so at least formally,

lim
t→0

E [f(Wt)|W0 = x]− f(x)

t
=

1

2
f ′′(x)

so we identify the generator as 1
2∆.
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